
 Download PDF (NDEx_-_The_Network_Data_Exchange_-_CX_Data_Model.pdf)

CX Data Model
Last updated: January 11th, 2022

Overview
CX is a network exchange format, designed as a �exible structure for transmission of networks.
It is designed for �exibility, modularity, and extensibility, and as a message payload in common
REST protocols. It is not intended as an optimized format for use in applications or for storage.

CX is "aspect-oriented", meaning that di�erent types of information about network elements
are separated into types of modules ("aspects"). Each aspect type speci�es a schema for the
information that it contains, typically a set of elements where the elements for that aspect type
also have a de�ned schema. There are design guidelines for dependencies between aspects;
the most basic guideline is that dependencies should be simple and minimal.

The �exibility of CX enables straightforward strategies for lossless encoding of potentially any
network. At the most basic level, this means that CX imposes very few restrictions: graphs can
be cyclic or acyclic and edges are implicitly directed, but formats can choose annotations
schemes to override this. CX does not, itself, make any commitment to a single “correct” model
of biology or graphic markup scheme.

CX is designed to facilitate streaming, potentially reducing memory footprint burden on
applications processing large CX networks. In particular, in a CX stream, the elements of each
aspect are broken into fragments and the fragments can be transmitted in any order.

Table of Contents
1. A Simple Example: A Small Network with Cartesian Layout
2. CX Aspects Present in Most Networks
3. Aspects and Aspect Elements
4. CX Stream Structure
5. Aspect Metadata
6. Core Aspects

6.1. nodes
6.2. edges
6.3. nodeAttributes

https://staging.ndexbio.org/data-model/NDEx_-_The_Network_Data_Exchange_-_CX_Data_Model.pdf

1. A Simple Example: A Small Network with
Cartesian Layout
Conceptually, the network consists of three nodes, two of which are connected. The nodes
aspect (named nodes) comprise the base aspect, while the edges (named edges) are an aspect
composed onto the nodes, as are the cartesian coordinates (named cartesianLayout). The “CX
Encoding” diagram shows all three aspects, focusing on how the edges and cartesianLayout
annotate nodes.

6.4. edgeAttributes
6.5. networkAttributes
6.6. cartesianLayout

7. Data types for Attributes
8. NDEx CX Conventions

8.1. Network Attributes Treated Specially by NDEx
8.2. Node Attributes Treated Specially by NDExs

9. CX Aspects De�ned by the NDEx Project
10. CX Aspects De�ned by Cytoscape

2. CX Aspects Present in Most Networks
"networkAttributes"

Each element speci�es a name-value pair annotating the network
"nodes"

Each element speci�es a node in the network
Each node must specify its internal integer ID
Can also specify either:

a node name
a standard identi�er de�ning what the node represents
or both

"edges"

Elements specify edges that connect nodes
Each edge must specify:

its internal integer ID
The IDs of the nodes connected by the edge

The element may optionally specify the type of interaction represented by the edge
“nodeAttributes”

Each element speci�es a name-value pair describing one node, identifying the node
by its internal integer ID

“edgeAttributes”
Each element speci�es a name-value pair describing one edge, identifying the edge
by its internal integer ID

The “nodes” and “edges” contain no other information about the network, simply the identi�ers
of the nodes that the network contains and the edges that connect them. The elements of
other aspects typically refer to nodes and edges by their IDs. Some aspects simply annotate the
network as a whole. Any reference between aspects by ID is allowed but complex schemas of
linked aspect elements are considered bad practice.

Applications are free to make use of relevant aspects while ignoring others. Using a CX network
is therefore a process of selection of the desired aspects followed by integration of the aspects
in a task appropriate data structure. Aspects ignored by an application are referred to as
"Opaque" to the application. Note that CX is not intended to be used as an internal data
structure for an application, although some applications may choose to use it this way.

3. Aspects and Aspect Elements
Aspects are sets of Aspect Elements, each of the same type. The Aspect de�nes the data
structure for its elements and can hold multiple instances of that data structure. An Aspect
essentially amounts to a data type, de�ning the distinct key values and structure for its
elements.

An aspect de�ned by a community may evolve over time, requiring versioning. This is handled
simply by de�ning a new aspect name. The name can include the version, but specifying the
aspect version in pre-metadata would be the preferred method. A program supporting CX must
therefore know which aspects it handles by name and version(s).

Aspect Elements May Refer to Each Other by IDs

An Aspect may de�ne an “@id” property for its elements. This is the id by which the element
may be referenced by another element, either in the same aspect or in another aspect.

Referenceable IDs de�ned in an aspect must be unique for the aspect for the life of the
network.
All Aspects must de�ne the schema for their elements such that any references to
elements are typed: it must explicitly de�ne the Aspect of the referenced element. For
example, if an Aspect can refer to both nodes and edges by their ids, it must use di�erent
keys to do so, otherwise the references would be ambiguous.
Note that this typing enables placeholder objects to be created by applications reading CX
when they encounter a reference to an element before the element itself while processing
the CX stream, updating the placeholder as the full information becomes available.

Aspect Element ids are integers and are assigned based on a monotonically increasing counter
stored in the Aspect Metadata.

References between Aspect Elements pose challenges in the case where a program changes a
CX network while treating some aspects as opaque. References between modi�ed or deleted
elements and elements in the opaque aspects may become inconsistent. For this reason, each
application that modi�es a CX network should designate the Aspects that it asserts to be
consistent after the modi�cations, using the Aspect Consistency Group metadata (see below).

Note that streaming �lters can easily be implemented if the operate on Aspects with elements
that aren’t referenced by other elements - elements can be removed incrementally without
introducing inconsistencies. But in the case where the elements may be referenced by other
elements, the participating Aspects must be loaded into memory to resolve inconsistencies
before transmitting the �ltered CX.

Note that in a given CX stream of Aspect Fragments, it is not necessary that a referenced
element be de�ned before its reference. References will typically be resolved after the CX
stream is parsed, but note that it is not required that the recipient resolve any references
unless this is necessary for its function. A program might pass resolve reference only for
aspects that it used and simply pass on or ignore all other aspects.

Best practice for a program that stores networks based on CX is that it should resolve all
references between supported aspects and should error if there are any references that cannot
be resolved, that leave incomplete “placeholder” elements.

Numbers in Aspect Elements

Aspect elements may use numbers as supported by JSON. They are serialized as strings without
quotation and are parsed by all implementations according to the JSON speci�cation:

A number contains an integer component that may be pre�xed with an optional minus
sign, which may be followed by a fraction part and/or an exponent part.
Octal and hex forms are not allowed. Leading zeros are not allowed.
A fraction part is a decimal point followed by one or more digits.
An exponent part begins with the letter E in upper or lowercase, which may be followed
by a plus or minus sign. The E and optional sign are followed by one or more digits.
Numeric values that cannot be represented as sequences of digits (such as In�nity and
NaN) are not permitted (in contrast, for numerical value attributes, such as
nodeAttributes, which are serialized as strings within quotations, "NaN" and "null" are
permitted).

The storage of these numbers for a given application parsing CX depends on the JSON
implementation used. NDEx and the Cytoscape ecosystem support integers up to 4 bytes,
ranging from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Any use of integers
should be limited to this range.

An aspect may also be designed to store numbers as strings, placing the responsibility for
parsing and otherwise handling these values on any CX implementations that supports the
aspect.

4. CX Stream Structure
First, an optional pre-metadata object is transmitted, followed by a sequence of aspect
fragments and then by an optional post-metadata object. A status aspect is transmitted at the
end.

[

<aspect-fragment 1>,

….

<aspect-fragment N>,

<post-metadata>

<status aspect>

]

Pre and Post Metadata in CX

The metadata for the CX stream is provided in two JSON objects, the pre-metadata and the
post-metadata. The pre-metadata is the �rst object in the stream after the numberVeri�cation
aspect, and the post-metadata is the last object in the stream before the status aspect. They
have the following schema, in which they break down into a set of Aspect Metadata objects,
one for each Aspect present in the CX:

{“metaData” : [<aspect metadata 1>, <aspect metadata 2>, …]}

...

{“metaData” : [<aspect metadata 1>, <aspect metadata 2>, …]}

Aspect Fragments
The primary CX will be rendered as a sequence of Aspect Fragments, where each Aspect
Fragment holds one or more Aspect Elements. The Aspect Elements contained in all fragments
of a given type compose the Aspect.

An Aspect Fragment has a simple schema:

{

<aspect name 1> : [<aspect-element 1>, …]

}

Structuring a CX network as a stream of Aspect Fragments addresses the design goal to enable
incremental processing of CX, promoting the development of network processing services that
are memory e�cient and potentially parallelizable.

There is no �xed limit on the number of elements an Aspect Fragment can contain, though the
number should be “small” -- less than 100 is safe. The larger the Aspect Fragment, the less likely
the sender or receiver may have the memory necessary to represent it.

Status Aspect
A complete CX stream ends with a status aspect object. This aspect tells the recipient if the CX is
successfully generated by the source. A use case is that a source is generating a CX network
incrementally and transmits the data to the recipient through a stream, when an error occurs
during the creation of the CX network, the source can write out a status aspect to the CX

stream with some error message in it and �nish the CX network immediately. The recipient will
know from this aspect that the CX is a bad object and can stop the downstream process on this
network. The status aspect has this structure:

{

"status" : [{

"error" : string,

"success" : boolean

}]

}

The “error” �eld holds the error message when error occurs. “success” �elds tells if the cx
document is successfully generated by the source.

5. Aspect Metadata
As a transfer format, Aspect Metadata is understood in the context of a network owner and a
consumer, where the consumer may modify the network and return it to the owner. The owner
is considered to have a complete picture of the network including all metadata and aspects
associated with the network, and is considered to be authoritative as to the entire network and
its parts. While the consumer can ask the owner for all or some of a network’s aspects, for
every aspect returned by the owner, the owner must also return the aspect’s metadata.
Additionally, for every aspect the consumer sends to the owner, it must supply the aspect’s
metadata.

The owner or consumer can send part of each aspect’s metadata as pre-metadata and part as
post-metadata -- the aspect’s metadata is considered to be the union of the pre-metadata and
post-metadata. Each aspect must have pre-metadata containing at least a name and version
�eld. If an aspect has post-metadata, it must have the same name �eld as the corresponding
pre-metadata. For optional elements, the sender must include the element values, but is not
required to if it doesn’t have values for these elements. For optional and required �elds
(besides name and version), the sender is free to send each �eld as pre- or post-metadata, the
choice of which is solely the sender’s convenience. The receiver must be prepared to accept
metadata values as pre-metadata, post-metadata, or (for optional �elds) not at all.

Besides name, all attributes should only be speci�ed at most one time -- there should be no
redundant attributes stated in both pre-metadata and post-metadata. The union of pre-
metadata and post-metadata must always be equivalent to the aspect metadata - for example,

it is valid for a system to receive CX, merge pre and post metadata and then output CX with all
attributes speci�ed as only pre-metadata.

Each aspect may pose its own requirements on which additional attributes are mandatory in
the corresponding metadata.

When a sender has the choice of sending an element as either pre- or post-metadata, all things
being equal, it should send it as pre-metadata.

The full speci�cation of Aspect Metadata:

{

name: string,

version: string,

idCounter: long,

properties: list of name value pairs in JSON object format.

elementCount: long,

consistencyGroup: long ,

checksum: string

}

Each Aspect Metadata contains:

"name"
Required in both pre- and post-metadata
The name of the aspect

"version"
Required in pre-metadata
version of this aspect schema
Version is de�ned according to semantic versioning rules. That is, if a service
requires aspect A version 1.1.0, it would not accept aspect version 1.0.0 or aspect
2.0.0. Essentially, the minor version number indicates that required values have
been added but none have been removed or had semantic meaning changes –
optional values don’t �gure into this discussion. The major version indicates that
required values have been removed or had their semantics changed

"idCounter"
Integer (All Element IDs are integers)
This is an integer monotonically increasing ID counter used for ID generation, and
represents the highest ID represented in the aspect or any of the aspect’s previous
versions

Required if the aspect exports IDs for its aspect elements
"checksum" (Deprecated. NDEx CX implementation doesn’t support this attribute. This
attribute is ignored in NDEx)

A CRC/hash
Optional
most likely as post-metadata, Optionally checked by a CX reader

"elementCount"
number (integer) of elements in this aspect
Optional

"consistencyGroup"
An integer identi�er shared by aspects to indicate that they are mutually consistent
Used to help track status of the network as di�erent programs operate on di�erent
sets of aspects. See discussion of Aspect Consistency Group IDs below
Optional

"properties"
An aspect-de�ned property list
Optional
A list of name value pairs in JSON object format. (may be an empty list [])
Properties that need to be fetched or updated independently of aspect data

Here is an example of pre-metadata list:

[

{

name:”nodes”,

version: “1.0”,

idCounter: 200,

lastUpdate: 1034334343,

elementCount: 32,

properties: [],

consistencyGroup: 1

},

{

name: “Citation”,

Version: “1.0”,

lastUpdate: 1034334343,

consistencyGroup: 1,

properties: [

{“name”: “curator”,

“value”:”Ideker Lab”}

],

}

]

Aspect Consistency Group IDs
When an application modi�es a CX network, it may make changes that are inconsistent with the
state of aspects that it treated as opaque. Subsequent operations may need to know which
aspects are expected to be consistent with each other and which may be inconsistent.

To that end, we de�ne “consistency groups” and in the metadata for each aspect, a
consistencyGroup attribute assigns the aspect to one group. All aspects in a group are asserted
to be consistent with each other.

An application that modi�es a CX network should therefore set the consistency group
assignments for the aspects that it changed, added, or can prove to be consistent such that
they are distinguished from those that may have become inconsistent.

A simple case is where an aspect is added that only refers to nodes and/or edges. It should be
assigned the same consistency group as the nodes and edges.

But, for example, in the case where edges are deleted, the application should also check
consistency and potentially edit all non-opaque aspects to ensure that they have no references
to deleted edges. All of the modi�ed and checked aspects are assigned a new, unique
consistencyGroup attribute. All opaque aspects retain their previous consistencyGroup and can
be identi�ed as potentially inconsistent with the nodes, edges, and other aspects.

The consistencyGroup attribute is a monotonically increasing value that increments when a
change occurs that could make one or more aspects inconsistent.

When we add an aspect, it gets tagged with the current consistency group (assuming it's
consistent with other aspects).
When we update an aspect, we increment the consistency group and tag the updated
aspect(s) with it.
Aspects in the same consistencyGroup are consistent with each other while aspects in
di�erent groups may potentially reference elements that no longer exist or can in other
ways be inconsistent.

6. Core Aspects
6.1. nodes
Mandatory Aspect

Nodes are represented as (possibly multiple) lists of node key-value pairs, preceded by the
keyword “nodes”. For nodes the keys are “@id” and the values are the node identi�er strings
that parse as integers - “node ids”.

Optionally, nodes can have a name (a single string), speci�ed by the "n" key. Nodes can also
have an optional represents attribute (a single string), speci�ed by the “r” key.

All node ids must be unique in the node aspect. A CX writer should not emit a node aspect in
which node ids are repeated and it is good practice for any CX reader to test for uniqueness
and handle malformed node aspects (either by erroring or by repairing, as appropriate to the
application).

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect as shown in the example below:

"nodes": [

{

"@id": 0

},

{

"@id": 1,

"n": "i am node 1",

"r": "HGNC:AKT1"

}

]

Condition is that all node ids (as a matter of fact, this applies to all other aspects with ids) are
unique (and not “empty”). At this point, it is the responsibility of the writer to make sure this is
true, but we could easily add a check for uniqueness to our parser.

6.2. edges
Edges are represented as (possibly multiple) lists of dictionaries, preceded by the keyword
“edges”. Edge dictionaries have three keys: “source” and “target” which refer to the node
identi�ers connected by the edge and, and an identi�er which is used by other elements to
refer to the edge (the “edge id”).

All edge ids must be unique in the edge aspect. A CX writer should not emit an edge aspect in
which edge ids are repeated and it is good practice for any CX reader to test for uniqueness
and handle malformed edge aspects (either by erroring or by repairing, as appropriate to the
application).

Although a given CX network might not have any aspects that reference edges, the identi�ers
are always assigned for consistency and to simplify subsequent operations on the network.

Edges can optionally also have an interaction �eld, speci�ed by the "i" key.

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect.

"edges": [

{ "@id": 0,

"s": 0,

"t": 1,

"i": "binds"

}

]

6.3. nodeAttributes
nodeAttributes store attribute values associated with nodes. Here are the nodeAttributes
element attributes:

mandatory:
“po” - property of speci�es the node to which the attribute applies.
“n” - text - attribute name
“v” - string or list of strings - the attribute value(s)

optional:
"d" - data type - attribute value data type (default is "string", see below)
"s" - subnetwork id (see Cytoscape aspects)

"nodeAttributes": [

{

"n": "weight",

"po": 74,

"v": ["2", "0.34", "2.3"],

"d": "list_of_double"

},

{

"n": "name",

"po": 74,

"v": "Node 6"

},

{

"n": "selected",

"po": 74,

"d": "boolean",

"v": "true",

"s": 366,

}

]

6.4. edgeAttributes
edgeAttributes store attribute values associated with edges. Usage:

Cytoscape supports this aspect for both CX input and output. The edgeAttributes are
mapped to the Cytoscape edge table for a network.
NDEx supports this aspect, storing it in a manner that enables queries to networks based
on edge attributes.

edgeAttributes element attributes:

mandatory:
“po” - property of speci�es the edge to which the attribute applies.
“n” - text - attribute name

“v” - string or list of strings - the attribute value(s)
optional:

"d" - data type - attribute value data type (default is "string", see below)
"s" - subnetwork id (see Cytoscape aspects)

"edgeAttributes": [

{

"n": "shared name",

"po": 84,

"v": "Node 5 (undirected) Node 6"

},

{

"n": "name",

"po": 84,

"v": "Node 5 (undirected) Node 6"

},

{

"n": "interaction",

"po": 84,

"v": "undirected"

},

{

"n": "shared interaction",

"po": 84,

"v": "undirected"

},

{

"n": "selected",

"po": 84,

"d": "boolean",

"v": "true",

"s": 366,

}

]

6.5. networkAttributes
networkAttributes store attribute values associated with the entire network. networkAttributes
element attributes:

mandatory:
“n” - text - attribute name
“v” - string or list of strings - the attribute value(s)

optional:
"d" - data type - attribute value data type (default is "string", see below)
"s" - subnetwork id (see Cytoscape aspects)

"networkAttributes": [

{

"n": "dc:title",

"v": "Result of heat diffusion analysis"

}

]

6.6. cartesianLayout
Cartesian layout elements store coordinates of nodes. Usage: Cytoscape supports this aspect
for both CX input and output.

cartesianLayout element attributes:

mandatory:
“node” - a node id - speci�es the node to which the coordinates apply

“x” - number - x coordinate
“y” - number - y coordinate

optional:
“z” - number - z coordinate
"view" - view id (see Cytoscape aspects)

"cartesianLayout": [{

"node" : 0,

"view" : 1476,

"x" : 5.5,

"y" : 200.3

}, {

"node" : 1,

"view" : 1476,

"x" : 110.1,

"y" : 210.2

}]

7. Data types for Attributes
Values for node, edge, network, and hidden attributes are always encoded as JSON strings.
Their data type is determined by the value of "d". If the data type "d" �eld is missing, the default
data type of (single!) string is used. The following data types are allowed:

boolean
double
integer
long
string (default)
list_of_boolean
list_of_double
list_of_integer
list_of_long
list_of_string

8. NDEx CX Conventions
Handling of Identi�ers
All identi�ers should be either:

<pre�x>:<id> format

a string without ‘ : ’
a URI

8.1. Network Attributes Treated Specially by NDEx
“version” - string

NDEx will treat this attribute as the version of the network
Format is not controlled but best practice is to use string conforming to Semantic
Versioning.

“ndex:sourceFormat” - string
used by NDEx to indicate format of an original �le imported, can determine
semantics as well.
The NDEx UI will allow export options based on this value. Applications that alter a
network such that it can no longer be exported in the format should remove the
value.

“name” - the name of the network
“description” - a description of the network

8.2. Node Attributes Treated Specially by NDEx
“alias” - alternative identi�ers for the node

same meaning as BioPAX “aliases”
“relatedTo” - identi�ers denoting concepts related to the node

same meaning as BioPAX “relatedTerms”

9. CX Aspects De�ned by the NDEx Project
ndexStatus
This aspect is deprecated. Starting from v2.4.0, NDEx server will no longer generate this aspect
from the server side. Network last updated before the v2.4.0 release will still have this aspect.
Users can use the ‘Get Network Summary’ API function to get the status and other information
of a network.

"ndexStatus" is NOT the same as the "status" aspect. The ndexStatus aspect contains attributes
that describe the state of the network when it was last stored in NDEx.

ndexStatus element attributes:

“externalId” - string - the CX network was derived from an NDEx network with this
universally unique identi�er (UUID) . The CX network may be a complete rendition of all
the information that was stored on NDEx or it may be some subset of the network.
“creationTme” - timeStamp (string) - Time at which the network was created.
“readOnly” - boolean - Content modi�cation not permitted only if true.
“visibility” - string - One of PUBLIC, PRIVATE. PUBLIC means it can be found or read by
anyone, including anonymous users. PRIVATE is the default, means that it can only be
found or read by users according to their permissions.
“published” - boolean - (planned for Q4 2017) If true, network is permanently readOnly but
access privileges can be altered.
“nodeCount” - integer - the number of node objects in the networklong <. /li>
“edgeCount” - integer - the number of edge objects in the network.
“owner” - text - unique name of owner on the server.
“ndexServerURI” - URI identifying the NDEx server from which the network retrieved.

"ndexStatus": {

"externalId": ...,

"nodeCount" : 10,

"edgeCount" : 55,

...

}

citations
This aspect is deprecated. We recommend using the attribute ‘citation’ on edges or nodes to
store citations.

The citations aspect elements specify literature references or other sources of information that
are relevant to the network. Other aspects, such as supports, edgeCitations, or nodeCitations
can link them to speci�c nodes and edges in the network, indicating that the citation supports
the assertion represented by the given node or edge.
Citations are primarily described by �ve dublin core terms (http://purl.org/dc/terms). The “dc”
pre�x is implicitly interpreted as referencing dublin core in the context of the citations aspect.

The �ve primary dublin core terms de�ned for citations are:

dc:title
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-title
(http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-title)

dc:contributor

http://purl.org/dc/terms
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-title

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-
contributor (http://dublincore.org/documents/2012/06/14/dcmi-terms/?
v=terms#terms-contributor)

dc:identi�er
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-identi�er
(http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-
identi�er)
Ideally citations make use of the “identi�er” key to link to their source. This can be a
URI, but might also use the “source:id” format, where source is usually “pmid” or
“doi”.

dc:type
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-type
(http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-type)

dc:description
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=elements#description
(http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=elements#description)
This should be a description of the resource, and it is preferable that information
that can be expressed in more speci�c attributes should not be in this attribute. The
“description” attribute could contain the title, authors, and/or journal reference, but
in that case it would not be expected to be machine parsable.

Additional attributes can be added to the citation using the “attributes” attribute, a collection of
name-value pairs.

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect.

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-contributor
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-identifier
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#terms-type
http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=elements#description

"citations": [

{ "@id": 590,

"dc:identifier": "doi:10.1016/0092-8674(93)80066-N",

"dc:title": "Bcl-2 functions in an antioxidant pathway"

"dc:description": "Article from Cell, Volume 75, Issue 2, p241–251, 22 October 1993 ",

"attributes": [

{

"n" : "name1",

"v" : "value1",

},

{

"n" : "name2",

"v" : "26",

"t" : "integer",

}

]

}

]

nodeCitations
This aspect is deprecated. We recommend using the the attribute ‘citation’ on edges or nodes
to store citations.

Each nodeCitations element links a collection of node ids to a collection of citation ids.

"nodeCitations": [

{

"citations": [590],

"po": [27]

}

]

edgeCitations
This aspect is deprecated. We recommend using the the attribute ‘citation’ on edges or nodes
to store citations.

Each edgeCitations element links collection of edge ids to a collection of citation ids.

"edgeCitations": [

{

"citations": [590],

"po": [24]

}

]

Supports
This aspect is deprecated. We recommend using the the attribute ‘support’ on edges or nodes
to store citations.

Each support element de�nes text that can be used to “support” - i.e. provide evidence for - one
or more nodes or edges in the network. It optionally can also specify a citation id to indicate
that the text is derived from the cited publication or data source. It may also have an optional
attribute “attributes” which is a collection of name-value pairs.

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect.

"supports": [

{

"@id": 589,

"citation": 590,

"text": "Bcl-2 protected cells from H2O2- and menadione-induced oxidative deaths",

"attributes": [

{

"n" : "name1",

"v" : "value1",

},

{

"n" : "name2",

"v" : "26",

"t" : "integer",

}

]

}

]

edgeSupports
This aspect is deprecated. We recommend using the the attribute ‘support’ on edges or nodes
to store citations.

Each edgeSupports element links a collection of edge ids to a collection of support ids.

"edgeSupports": [

{

"supports": [589],

"po": [24]

}

]

nodeSupports
This aspect is deprecated. We recommend using the the attribute ‘support’ on edges or nodes
to store citations.

Each nodeSupports element links a collection of node ids to a collection of support ids.

"nodeSupports": [

{

"supports": [589],

"po": [27]

}

]

functionTerms
This aspect is deprecated. No recommendations for alternative representation.

functionTerms aspect elements link nodes with expressions that de�ne the meaning of the
node in the network. The expressions compose external vocabulary terms to de�ne concepts.
Examples in BEL would include expressions that de�ne complexes, reactions, protein activities
and which distinguish proteins vs RNA vs genes.

functionTerms element attributes:

mandatory
“po” - an id - speci�es the node which the function term de�nes.
“f” - string - the function, a name or an external vocabulary term specifying the
composing function.
“args” - list of strings - ordered argument list to the function. Each argument can be
either a literal value (string or number), an external vocabulary term, or a
functionTerms expression.

reie�edEdges
This aspect is deprecated. No recommendations for alternative representation.

A rei�edEdges Aspect Element designates that a node represents an edge. This is used to
implement logic such as “A increases the inhibition of C by B” where the target of the
“increases” edge is intended to be another edge, the “inhibits” edge from B to C.

The rei�edEdges aspect enables representation of this case by designating an additional node
“D” to represent “B inhibits C”. The CX edges attribute can then be populated with “A increases
D” and “B inhibits C”, a simple topology that should be handled by any network application.
Applications that have internal data models supporting edge-edge interactions can parse the
rei�edEdges aspect to determine which nodes are “standing in” for edges.

Usage:

Cytoscape treats this aspect as opaque.
NDEx supports this aspect, storing it in a manner that enables queries that retrieve
subnetworks to include the rei�edEdges elements and edges that apply to the selected
nodes.

rei�edEdges element attributes:

mandatory
“edge” - an edge id - speci�es the edge represented by the node.
“node” - a node id - speci�es the node

"reifiedEdges": [

{

"node": 72,

"edge": 84,

},

{

"node": 77,

"edge": 88,

},

]

@context
The @context was a separate aspect in the previous release of CX speci�cation. It is inspired by
the JSON-LD @context (http://www.w3.org/TR/json-ld/#the-context) structures that de�ne the
vocabularies used in the CX document or stream.

In order to make it easier for user to user and make it more compatible with Cytoscape
network data model. We have change @context from a separate aspect to an attribute on the
network. The value of this attribute is a serialized string from a JSON dictionary that has a pre�x

http://www.w3.org/TR/json-ld/#the-context

as its key and a URL as its value.

@context maps terms to IRIs. Terms are case sensitive.

This is a valuable feature of CX because it enables unambiguous, consistent reference to
controlled vocabularies, when referencing both properties and values. It is possible to
determine all namespaces and speci�c terms used in a network in a consistent fashion.

"@context": {

"MESHD": "http://resource.belframework.org/belframework/1.0/namespace/mesh-diseases.beln

s",

"BEL": "http://belframework.org/schema/1.0/xbel"

}

provenanceHistory
This aspect is deprecated. The server will just treat this as an opaque aspect.

Client applications can still use it but should not expect a CX document to always have this
aspect.

For recording the origin and signi�cant events of this network, we recommend to use network
attributes to store them. We recommend using prov:wasGeneratedBy and
prov:wasDerivedFrom for the event and the list of contributing network URLs.

10. CX Aspects De�ned by Cytoscape
Cytoscape contributes aspects that organize subnetworks, attribute tables, and visual
attributes for use by its own layout and analysis tools. This section describes the Cytoscape
aspects, which are distinguished by the “cy” pre�x on the aspect name.

In addition, Cytoscape extends a number of aspects de�ned already for the root network. It
adds a member that identi�es either the Cytoscape subnetwork or view object to which an
aspect element applies. If the member is not present in an element, the element refers to the
root network. The following lists the a�ected root aspects and the optional Cytoscape member:

Root Aspect Member Referent

nodeAttributes 's' subnetwork

edgeAttributes 's' subnetwork

networkAttributes 's' subnetwork

cartesianLayout 'view' view

cyGroups
This is used to represent Cytoscape "groups". The data �elds are:

@id: the identi�er of this group
n: the name of this group
nodes: the nodes making up the group - a list of node ids
external_edges: the external edges making up the group - a list of edge ids
internal_edges: the internal edges making up the group - a list of edge ids
collapsed: a boolean value to indicate whether the group is displayed as a single node.

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect.

"cyGroups" : [{

"@id" : 1501,

"n" : "Group One",

"nodes" : [167, 165],

"external_edges" : [172],

"internal_edges" : [171, 170]

}]

cyVisualProperties
This is used to represent Cytoscape visual properties. The data �elds are:

properties_of: to indicate the element type these properties belong to (allowed values are:
"network", "nodes:default", "edges:default", "nodes", "edges")
applies_to: the identi�er of the element these properties apply to
view: the view these properties are associated with
properties: key-value (string, string) pairs of the actual properties

dependencies: key-value (string, string) pairs of the dependencies
mappings: key-value pairs (string, dictionary), in the form: "PROPERTY" : { "type" :
"the mapping type", "definition" : "the actual mapping" }

This is an example of cyVisualProperties:

"cyVisualProperties" : [{

"properties_of" : "nodes:default",

"applies_to" : 1476,

"view" : 1476,

"properties" : {

"NODE_BORDER_STROKE" : "SOLID",

"NODE_BORDER_WIDTH" : "1.5"

},

"dependencies" : {

"nodeCustomGraphicsSizeSync" : "true",

"nodeSizeLocked" : "false"

},

"mappings" : {

"NODE_FILL_COLOR" : {

"type" : "CONTINUOUS",

"definition" : "COL=gal1RGexp,T=double,L=0=#0066CC,E=0=#0066CC,G=0=#0066CC,OV=0=-2.426,L

=1=#FFFFFF,E=1=#FFFFFF,G=1=#FFFFFF,OV=1=1.225471493171426E-7,L=2=#FFFF00,E=2=#FFFF00,G=2

=#FFFF00,OV=2=2.058"

},

"NODE_LABEL" : {

"type" : "PASSTHROUGH",

"definition" : "COL=COMMON,T=string"

}

}

}, {

"properties_of" : "nodes",

"applies_to" : 42,

"view" : 1476,

"properties" : {

"NODE_FILL_COLOR" : "#FF3399"

}

}]

cyHiddenAttributes
This is used to represent Cytoscape "hidden" attributes. The data �elds are:

s: the identi�er of the subnetwork this hidden attribute belongs to (optional, if missing
applies to root-network)
n: the name of this hidden attribute
v: the actual value(s) - either a single value or a list
d: the datatype of this hidden attribute (optional, defaults to "string")

The aspect metadata must contain an idCounter representing the highest @id contained in the
aspect or any previous version of the aspect.

"cyHiddenAttributes" : [{

"s" : 52,

"n" : "layoutAlgorithm",

"v" : "Prefuse Force Directed Layout"

}]

cyNetworkRelations
This is used to represent Cytoscape network relations. The data �elds are:

p: the parent network (optional, if missing parent is root-network)
c: the child network
r: the relationship type ("view", "subnetwork") (optional, if missing, default is
“subnetwork”)
name: the name of the child network (optional, if missing, default is reader-dependent)

"cyNetworkRelations" : [{

"c" : 147,

"r" : "subnetwork",

"name" : "Network A"

}, {

"p" : 147,

"c" : 1476,

"r" : "view"

}]

cySubNetworks
This is used to represent subnetworks. The data �elds are:

@id: the identi�er of this subnetwork
edges: the edges making up this subnetwork - list of edge identi�ers, can be "all"
nodes: the nodes making up this subnetwork - list of node identi�ers, can be "all"

"cySubNetworks" : [{

"@id" : 147,

"nodes" : [167, 165, 163, 161, 159],

"edges" : [172, 178, 171, 170, 176]

}]

cyTableColum
These elements are used to represent Cytoscape table column labels and types. Its main use is
to disambiguate empty table columns. The data �elds are:

s: the identi�er of the subnetwork this table column belongs to (optional, if missing
applies to root-network -- Cytoscape does not currently support table columns for the
root network, but this is option is included here for consistency)
n: the name of the table column

d: the datatype of table column (optional, defaults to "string")
applies_to: indicates whether this applies to "node_table", "edge_table", or
"network_table"

"cyTableColumn" : [{

"s" : 366,

"applies_to" : "node_table",

"n" : "weight",

"d" : "double"

}]

Share This!

 Twitter Facebook LinkedIn

Back to Top

POWERED BY

 (http://www.jetbrains.com/)

TERMS & CONDITIONS

NDEx Licensing, Terms & Conditions (../disclaimer-license/)information.

Copyright © 2013-2022, The Regents of the University of California, The Cytoscape Consortium. All rights reserved.

FOLLOW US

 (https://twitter.com/NDExProject)

 (https://www.youtube.com/channel/UCc7J1020F7e25F-zWEMtM0A)

 (https://www.linkedin.com/company/3991823)

If you use NDEx, please cite us:

http://www.jetbrains.com/
https://staging.ndexbio.org/disclaimer-license/
https://twitter.com/NDExProject
https://www.youtube.com/channel/UCc7J1020F7e25F-zWEMtM0A
https://www.linkedin.com/company/3991823

